A350993 Triangular numbers that are palindromes in base 9.
0, 1, 3, 6, 10, 91, 136, 300, 528, 820, 4560, 7381, 11476, 20910, 42486, 66430, 552826, 581581, 597871, 1664400, 2001000, 3420420, 3444000, 5070520, 5380840, 48427561, 75995956, 132494781, 134553810, 137158203, 159213090, 290585778, 434520460, 435848050, 669615310
Offset: 1
Examples
10 is a term since 10 = A000217(4) is a triangular number and also a palindromic number in base 9: 10 = 11_9. 91 is a term since 91 = A000217(13) is a triangular number and also a palindromic number in base 9: 91 = 111_9.
References
- Charles W. Trigg, Mathematical Quickies, McGraw Hill Book Co., 1967, Q112, p. 127.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..123
- Charles W. Trigg, Infinite sequences of palindromic triangular numbers, The Fibonacci Quarterly, Vol. 12, No. 2 (1974), pp. 209-212.
- Charles W. Trigg, Problem 281, The College Mathematics Journal, Vol. 15, No. 4 (1984), p. 346; Palindromic Triangular Numbers in Base Nine, Solution to Problem 281, by Michael Vowe, ibid., Vol. 17, No. 2 (1986), pp. 188-189.
- Maciej Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv:0811.2477 [math.NT], 2008.
- G. W. Wishard, Problem 3480, The American Mathematical Monthly, Vol. 38, No. 3 (1931), p. 170; Solution to Problem 3480, by Helen A. Merrill, ibid., Vol. 39, No. 3 (1932), p. 179.
Crossrefs
Programs
-
Mathematica
t[n_] := n*(n + 1)/2; Select[t /@ Range[0, 3*10^5], PalindromeQ[IntegerDigits[#, 9]] &]
Comments