A351006
Number of integer partitions of n into parts that are alternately unequal and equal.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 4, 6, 7, 9, 10, 12, 14, 16, 18, 22, 25, 28, 31, 36, 40, 46, 50, 56, 64, 71, 78, 88, 96, 106, 118, 130, 143, 158, 172, 190, 209, 228, 248, 274, 298, 324, 354, 384, 418, 458, 494, 536, 584, 631, 683, 742, 800, 864, 936, 1010, 1088, 1176, 1264
Offset: 0
The a(1) = 1 through a(11) = 12 partitions (A = 10, B = 11):
1 2 3 4 5 6 7 8 9 A B
21 31 32 42 43 53 54 64 65
211 41 51 52 62 63 73 74
311 411 61 71 72 82 83
322 422 81 91 92
511 611 522 433 A1
3221 711 622 533
4221 811 722
32211 5221 911
42211 4331
6221
52211
The alternately equal and unequal version is
A351005, even-length
A035457.
Cf.
A000070,
A003242,
A018819,
A027383,
A035363,
A088218,
A122134,
A344605,
A350842,
A350844,
A351011.
-
Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]
A351007
Number of even-length integer partitions of n into parts that are alternately unequal and equal.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
Offset: 0
The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
21 31 32 42 43 53 54 64 65 75 76 86 87
41 51 52 62 63 73 74 84 85 95 96
61 71 72 82 83 93 94 A4 A5
3221 81 91 92 A2 A3 B3 B4
4221 5221 A1 B1 B2 C2 C3
4331 4332 C1 D1 D2
6221 5331 5332 5441 E1
7221 6331 6332 5442
8221 7331 6441
9221 7332
8331
A221
433221
The alternately equal and unequal version is
A035457, any length
A351005.
-
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]
A351010
Numbers k such that the k-th composition in standard order is a concatenation of twins (x,x).
Original entry on oeis.org
0, 3, 10, 15, 36, 43, 58, 63, 136, 147, 170, 175, 228, 235, 250, 255, 528, 547, 586, 591, 676, 683, 698, 703, 904, 915, 938, 943, 996, 1003, 1018, 1023, 2080, 2115, 2186, 2191, 2340, 2347, 2362, 2367, 2696, 2707, 2730, 2735, 2788, 2795, 2810, 2815, 3600, 3619
Offset: 1
The terms together with their binary expansions and the corresponding compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
15: 1111 (1,1,1,1)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
63: 111111 (1,1,1,1,1,1)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
170: 10101010 (2,2,2,2)
175: 10101111 (2,2,1,1,1,1)
228: 11100100 (1,1,3,3)
235: 11101011 (1,1,2,2,1,1)
250: 11111010 (1,1,1,1,2,2)
255: 11111111 (1,1,1,1,1,1,1,1)
The case of twins (binary weight 2) is
A000120.
The Heinz numbers of these compositions are given by
A000290.
All terms are evil numbers
A001969.
The strict case (distinct twins) is
A351009, counted by
A032020 with 0's.
The anti-run case is
A351011, counted by
A003242 interspersed with 0's.
A011782 counts integer compositions.
A351014 counts distinct runs in standard compositions.
Cf.
A018819,
A025047,
A027383,
A035457,
A053738,
A088218,
A106356,
A238279,
A344604,
A351012,
A351015.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],And@@EvenQ/@Length/@Split[stc[#]]&]
A353427
Numbers k such that the k-th composition in standard order has all run-lengths > 1.
Original entry on oeis.org
0, 3, 7, 10, 15, 31, 36, 42, 43, 58, 63, 87, 122, 127, 136, 147, 170, 171, 175, 228, 234, 235, 250, 255, 292, 295, 343, 351, 471, 484, 490, 491, 506, 511, 528, 547, 586, 591, 676, 682, 683, 687, 698, 703, 904, 915, 938, 939, 943, 983, 996, 1002, 1003, 1018
Offset: 1
The terms and corresponding compositions begin:
0: ()
3: (1,1)
7: (1,1,1)
10: (2,2)
15: (1,1,1,1)
31: (1,1,1,1,1)
36: (3,3)
42: (2,2,2)
43: (2,2,1,1)
58: (1,1,2,2)
63: (1,1,1,1,1,1)
87: (2,2,1,1,1)
122: (1,1,1,2,2)
127: (1,1,1,1,1,1,1)
The version for parts instead of lengths is
A022340, counted by
A212804.
These compositions are counted by
A114901.
The case of all run-lengths = 2 is
A351011.
The case of all run-lengths > 2 is counted by
A353400.
A005811 counts runs in binary expansion.
Statistics of standard compositions:
Cf.
A044813,
A128695,
A165413,
A240085,
A244164,
A274174,
A318928,
A333489,
A333755,
A353402,
A353432.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!MemberQ[Length/@Split[stc[#]],1]&]
A351009
Numbers k such that the k-th composition in standard order is a concatenation of distinct twins (x,x).
Original entry on oeis.org
0, 3, 10, 36, 43, 58, 136, 147, 228, 528, 547, 586, 676, 904, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 3600, 3658, 3748, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 10768, 10787, 11144, 14368, 14474, 14984, 32896, 33027, 33290, 33828, 33835, 33850, 34963
Offset: 1
The terms together with their binary expansions and standard compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
228: 11100100 (1,1,3,3)
528: 1000010000 (5,5)
547: 1000100011 (4,4,1,1)
586: 1001001010 (3,3,2,2)
676: 1010100100 (2,2,3,3)
904: 1110001000 (1,1,4,4)
The case of twins (binary weight 2) is
A000120.
All terms are evil numbers
A001969.
The version for Heinz numbers of partitions is
A062503, counted by
A035457.
These compositions are counted by
A032020 interspersed with 0's.
Taking singles instead of twins gives
A349051.
A085207 represents concatenation using standard compositions.
Cf.
A003242,
A027383,
A035363,
A088218,
A106356,
A122134,
A238279,
A344604,
A349054,
A351005,
A351007.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]], 1],0]]//Reverse;
Select[Range[0,1000], UnsameQ@@Split[stc[#]]&&And@@(#==2&)/@Length/@Split[stc[#]]&]
Showing 1-5 of 5 results.
Comments