cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351030 Lexicographically earliest infinite sequence such that a(i) = a(j) => A351031(i) = A351031(j) and A351032(i) = A351032(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 23, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 34, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 36, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 2, 60, 61, 62
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A351031(n), A351032(n)], or equally, of the ordered pair [A351033(n), A351034(n)].
For all i, j: a(i) = a(j) => A349910(i) = A349910(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); };
    A291759(n) = A289814(A048673(n));
    A304759(n) = A289813(A048673(n));
    A351031(n) = { my(m=1); fordiv(n,d,if(dA019565(A304759(d)))); (m); };
    A351032(n) = { my(m=1); fordiv(n,d,if(dA019565(A291759(d)))); (m); };
    Aux351030(n) = [A351031(n),A351032(n)];
    v351030 = rgs_transform(vector(up_to, n, Aux351030(n)));
    A351030(n) = v351030[n];

A351034 Lexicographically earliest infinite sequence such that a(i) = a(j) => A351032(i) = A351032(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 6, 1, 7, 1, 6, 8, 5, 1, 9, 1, 2, 1, 10, 1, 11, 1, 12, 8, 2, 8, 9, 1, 2, 1, 13, 1, 14, 1, 11, 15, 5, 1, 16, 8, 17, 1, 11, 1, 18, 8, 19, 1, 5, 1, 20, 1, 21, 8, 13, 1, 22, 1, 6, 8, 10, 1, 23, 1, 21, 24, 4, 25, 22, 1, 26, 27, 21, 1, 28, 1, 29, 8, 30, 1, 31, 8, 10, 15, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Comments

Restricted growth sequence transform of A351032.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A351032(n) = { my(m=1); fordiv(n,d,if(dA019565(A291759(d)))); (m); };
    v351034 = rgs_transform(vector(up_to, n, A351032(n)));
    A351034(n) = v351034[n];

A351031 a(n) = Product_{d|n, dA019565(A304759(d)).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 6, 6, 12, 2, 18, 2, 2, 36, 90, 2, 180, 2, 180, 6, 4, 2, 810, 12, 10, 180, 30, 2, 180, 2, 9450, 12, 20, 12, 56700, 2, 30, 30, 56700, 2, 420, 2, 12, 1080, 10, 2, 1275750, 2, 120, 60, 30, 2, 31500, 24, 9450, 90, 20, 2, 238140, 2, 4, 2520, 10914750, 60, 84, 2, 420, 30, 31500, 2, 2946982500, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Crossrefs

Cf. A019565, A048673, A289813, A304759, A351030, A351032, A351033 (rgs-transform).
Cf. also A293221.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A351031(n) = { my(m=1); fordiv(n,d,if(dA019565(A304759(d)))); (m); };
Showing 1-3 of 3 results.