cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351035 Lexicographically earliest infinite sequence such that a(i) = a(j) => A347385(i) = A347385(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 30 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A347385(n), A336158(n)], where A347385(n) is the Dedekind psi function applied to the odd part of n, i.e., A001615(A000265(n)), and A336158(n) is the least representative of the prime signature of the odd part of n.
For all i, j >= 1: A003602(i) = A003602(j) => a(i) = a(j).

Examples

			a(33) = a(35) as both 33 = 3*11 and 35 = 5*7 are odd nonsquare semiprimes, thus A336158 gives equal values for them, and also A347385(33) = A001615(33) = A347385(35) = A001615(35) = 48.
		

Crossrefs

Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351036 for the first time at n=175, where a(175) = 78, while A351036(175) = 80.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    Aux351035(n) = [A347385(n), A336158(n)];
    v351035 = rgs_transform(vector(up_to, n, Aux351035(n)));
    A351035(n) = v351035[n];