A351073 Maximal exponent in the prime factorization of A276156(n).
0, 1, 1, 1, 1, 3, 2, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 5, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4, 3, 1, 1, 2, 1, 2, 5, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 5, 1, 1, 1, 2, 1, 3, 2, 1, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1
Examples
For n = 1040 = 2^10 + 2^4, A276156(n) = A002110(10) + A002110(4) = 6469693440 = 2^12 * 3 * 5 * 7^3 * 307. The largest exponent is 12, therefore a(1040) = 12.
Links
Programs
-
Mathematica
{0}~Join~Array[Max[FactorInteger[#][[All, -1]]] &@ Total[Times @@@ Transpose@{Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[#, 2] &, 104, 2] (* Michael De Vlieger, Feb 04 2022 *)
-
PARI
A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); }; A351073(n) = A051903(A276156(n));
Comments