A351079 a(n) is the largest term encountered on the path from n to 0 when iterating the map x -> x', or 0 if 0 cannot be reached from n (or if n is 0). Here x' is the arithmetic derivative of x, A003415.
0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 0, 0, 17, 21, 19, 0, 21, 22, 23, 0, 25, 0, 0, 0, 29, 31, 31, 0, 33, 34, 0, 0, 37, 38, 0, 0, 41, 42, 43, 0, 0, 46, 47, 0, 49, 0, 0, 0, 53, 0, 0, 0, 57, 58, 59, 0, 61, 62, 0, 0, 65, 66, 67, 0, 0, 70, 71, 0, 73, 0, 0, 0, 77, 78, 79, 0, 0, 82, 83, 0, 85, 0, 0, 0, 89
Offset: 0
Keywords
Examples
For n = 15, if we iterate with A003415, we get a path 15 -> 8 -> 12 -> 16 -> 32 -> 80 -> 176 -> 368 -> ..., where the terms just keep on growing without ever reaching zero, therefore a(15) = 0. For n = 18, its path down to zero, when iterating A003415 is: 18 -> 21 -> 10 -> 7 -> 1 -> 0, and the largest term is 21, therefore a(18) = 21.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Comments