cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351083 a(n) = gcd(n, A003415(A276086(n))), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 7, 8, 1, 1, 1, 2, 1, 1, 5, 16, 1, 3, 1, 10, 1, 1, 1, 4, 25, 1, 1, 2, 1, 1, 1, 2, 1, 17, 5, 12, 1, 1, 13, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 25, 1, 4, 1, 3, 5, 2, 1, 1, 1, 2, 1, 1, 7, 4, 1, 1, 1, 2, 1, 7, 1, 24, 1, 1, 5, 2, 7, 1, 1, 80, 1, 1, 1, 14, 5, 1, 1, 8, 1, 3, 91, 4, 1, 1, 1, 2, 1, 49, 1, 4
Offset: 0

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Crossrefs

Cf. A003415, A276086, A324198, A327860, A328572, A351080, A351084, A351087 (fixed points), A354823 (Dirichlet inverse), A373145, A373599 (indices of multiples of 3 in this sequence).
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860).
Cf. also A345000.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, If[m < 2, 0, m Total[#2/#1 & @@@ FactorInteger[m]]]]] &, 101, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A351083(n) = gcd(n, A327860(n));

Formula

a(n) = gcd(n, A327860(n)) = gcd(n, A003415(A276086(n))).
a(n) = A373145(A276086(n)). - Antti Karttunen, Jun 18 2024