cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351084 a(n) = gcd(n, A328572(n)), where A328572 converts the primorial base expansion of n into its prime product form, but with 1 subtracted from all nonzero digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 35
Offset: 0

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Crossrefs

Programs

  • PARI
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
    A351084(n) = gcd(n, A328572(n));
    
  • PARI
    A351084(n) = { my(m=1, p=2, orgn=n); while(n, if(n%p, m *= (p^min((n%p)-1, valuation(orgn, p)))); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = gcd(n, A328572(n)) = gcd(A324198(n), A351083(n)).
a(n) = gcd(n, A085731(A276086(n))) = gcd(n, A276086(n), A327860(n)).