cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345000 a(n) = gcd(A003415(n), A003415(A276086(n))), where A003415(n) is the arithmetic derivative of n, and A276086(n) gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16, 1, 3, 1, 2, 5, 1, 1, 4, 5, 5, 1, 2, 1, 1, 1, 10, 1, 1, 3, 12, 1, 1, 1, 2, 1, 1, 1, 4, 1, 5, 1, 2, 1, 5, 5, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 12, 3, 1, 1, 2, 1, 1, 1, 12, 1, 1, 55, 10, 3, 1, 1, 16, 1, 1, 1, 2, 1, 5, 1, 140, 1, 3, 1, 16, 1, 49, 3, 2, 1, 7, 1, 28, 1, 7, 1, 2, 1
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Cf. A003415, A276086, A327860, A347958 (inverse Möbius transform), A347959, A351083, A351085, A351086, A351235, A351236.
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860).
Cf. also A324198, A327858.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A345000(n) = gcd(A003415(n), A003415(A276086(n)));

Formula

a(n) = gcd(A003415(n), A327860(n)) = gcd(A003415(n), A003415(A276086(n))).

A351085 Lexicographically earliest infinite sequence such that a(i) = a(j) => A327858(i) = A327858(j) and A345000(i) = A345000(j) for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 5, 3, 6, 7, 3, 3, 4, 3, 8, 2, 9, 3, 10, 3, 11, 12, 3, 3, 13, 12, 14, 8, 4, 3, 3, 3, 15, 16, 3, 17, 18, 3, 19, 2, 4, 3, 3, 3, 6, 8, 20, 3, 21, 16, 14, 12, 22, 3, 10, 2, 4, 2, 3, 3, 4, 3, 8, 8, 23, 24, 3, 3, 11, 2, 3, 3, 25, 3, 8, 26, 27, 24, 3, 3, 9, 7, 3, 3, 4, 2, 14, 2, 28, 3, 10, 2, 29, 2, 30
Offset: 0

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A327858(n), A345000(n)].
For all i, j >= 1: A305800(i) = A305800(j) => a(i) = a(j).
For all i, j >= 0: a(i) = a(j) => A351086(i) = A351086(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    Aux351085(n) = [A327858(n), A345000(n)];
    v351085 = rgs_transform(vector(1+up_to,n,Aux351085(n-1)));
    A351085(n) = v351085[1+n];

A351235 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), A327858(i) = A327858(j) and A345000(i) = A345000(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 7, 2, 15, 16, 17, 18, 8, 2, 19, 2, 20, 21, 7, 22, 23, 2, 24, 10, 25, 2, 19, 2, 26, 27, 28, 2, 29, 30, 31, 14, 32, 2, 33, 10, 25, 10, 7, 2, 34, 2, 9, 27, 35, 36, 19, 2, 13, 10, 19, 2, 37, 2, 9, 38, 39, 36, 19, 2, 40, 41, 7, 2, 34, 10, 17, 10, 42, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A046523(n), A327858(n), A345000(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j) => A351085(i) = A351085(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    Aux351235(n) = [A046523(n), A327858(n), A345000(n)];
    v351235 = rgs_transform(vector(up_to,n,Aux351235(n)));
    A351235(n) = v351235[n];
Showing 1-3 of 3 results.