A351137 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(3*n) * Stirling1(n,k).
1, 1, 129, 121172, 421875178, 3922823960054, 80130334773241142, 3156849112458066440568, 218554371053209725986724984, 24795129220015277612148345850896, 4365539219231132131300647267518575008, 1141930521329052244894253748456776246166288
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..125
Programs
-
Mathematica
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(3*n)*stirling(n, k, 1));
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^3*x))^k)))
Formula
E.g.f.: Sum_{k>=0} (-log(1 - k^3*x))^k.
a(n) ~ c * r^(3*n) * (1 + r*exp(3/r))^n * n^(4*n + 1/2) / exp(4*n), where r = 0.97698437755148201976772582981871258235824532360125531194... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-3/r) and c = 2.3655154360078103511101518906595610482889989819... - Vaclav Kotesovec, Feb 04 2022
Comments