A351178 Integral area of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression.
6, 84, 126, 156, 210, 456, 546, 570, 1116, 1170, 1176, 1554, 2046, 2220, 2394, 3096, 3216, 3294, 3354, 3924, 4740, 5124, 6006, 6180, 6510, 7326, 7446, 8760, 9030, 9264, 9906, 10374, 10920, 11466, 12684, 13104, 15210, 16170, 16296, 16716, 17556, 18060, 18090, 18354, 22134, 22860, 23550
Offset: 1
Keywords
Examples
a(1) = 6 corresponds to the Pythagorean triple (3, 4, 5), this is the unique right integer-sided triangle in this sequence. a(2) = 84 for triple (13, 14, 15) (see MacNeill link). a(3) = 126 for triple (15, 28, 41) (see Penguin reference, entry 126). a(4) = 156 for triple (15, 26, 37) (see MacNeill link).
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 126, page 122.
Links
- John MacNeill, 13, 14, 15 and 15, 26, 37, Mathematical Spectrum, Vol. 21, No. 3, 1989, pp. 83-84.
Programs
-
PARI
lista(nn) = {my(list = List()); for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); if (gcd([a,b,c]) == 1, my(p = (a+b+c)/2); if (issquare(x=p*(p-a)*(p-b)*(p-c)), listput(list, sqrtint(x)));););); vecsort(Vec(list));} \\ Michel Marcus, Feb 05 2022
Extensions
Missing terms added by Michel Marcus, Feb 05 2022
Comments