cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350456 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 17, -85, 385, -1767, 8929, -50633, 312705, -2036267, 13794417, -97295069, 717808897, -5549714767, 44868094145, -377741383697, 3298933836033, -29813463964115, 278462029910993, -2685972391332837, 26733375327601281, -274247228584531767
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2022

Keywords

Comments

Shifts 2 places left under 2nd-order inverse binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 2 x)]/(1 + 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-2)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-2)^k * a(n-k-2).

A351184 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 3*x)) / (1 + 3*x).

Original entry on oeis.org

1, 1, 1, -2, 4, -11, 55, -359, 2359, -15230, 100840, -716555, 5580145, -47230091, 425472229, -4013326982, 39379161136, -402010392971, 4279164575167, -47533936734179, 550239127112107, -6618018093867506, 82447377648018700, -1061324336149876667, 14095604842846277617
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2022

Keywords

Comments

Shifts 2 places left under 3rd-order inverse binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 24; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 3 x)]/(1 + 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-3)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-3)^k * a(n-k-2).

A351185 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 4*x)) / (1 + 4*x).

Original entry on oeis.org

1, 1, 1, -3, 9, -31, 153, -1075, 8689, -72031, 605201, -5282051, 49239225, -497094079, 5410919273, -62597718643, 759331611489, -9586004915007, 125701843190689, -1713676634245251, 24313707650733289, -358906747784541151, 5502327502961296825, -87382907614533531443
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2022

Keywords

Comments

Shifts 2 places left under 4th-order inverse binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 4 x)]/(1 + 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-4)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-4)^k * a(n-k-2).

A351186 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 5*x)) / (1 + 5*x).

Original entry on oeis.org

1, 1, 1, -4, 16, -69, 371, -2719, 24691, -243804, 2479276, -25931249, 284075601, -3320433179, 41744590941, -561939568544, 8008026088996, -119496752915869, 1854697111334891, -29870689367146379, 499291484226079551, -8668202648905259624, 156301404533216141576
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2022

Keywords

Comments

Shifts 2 places left under 5th-order inverse binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 5 x)]/(1 + 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-5)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-5)^k * a(n-k-2).
Showing 1-4 of 4 results.