cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351277 a(n) = Sum_{k=0..n} (-2*k)^k * Stirling2(n,k).

Original entry on oeis.org

1, -2, 14, -170, 2910, -64202, 1733278, -55338250, 2039421598, -85204516298, 3979272245662, -205432301027978, 11616783053131934, -714082744228546890, 47409028234931260318, -3380871137079666543114, 257736986308003127354014
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-2*k)^k*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(2*(exp(x)-1)))))

Formula

E.g.f.: 1/(1 + LambertW( 2 * (exp(x) - 1) )), where LambertW() is the Lambert W-function.
a(n) ~ (-1)^n * n^n / (sqrt(2*exp(1) - 1) * exp(n) * (1 - log(exp(1) - 1/2))^(n + 1/2)). - Vaclav Kotesovec, Feb 06 2022

A351334 a(n) = Sum_{k=0..n} k! * (-k)^k * Stirling2(n,k).

Original entry on oeis.org

1, -1, 7, -139, 5227, -317491, 28352347, -3495615859, 568791063547, -118065959980051, 30445266606199387, -9547490385298102579, 3578014749635903623867, -1579193384981544127824211, 810752966831581612807206427, -479049438742420410992820125299
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k!*(-k)^k*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(1-exp(x)))^k)))

Formula

E.g.f.: Sum_{k>=0} (k * (1 - exp(x)))^k.
Showing 1-2 of 2 results.