cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351219 Multiplicative with a(p^e) = Fibonacci(e+1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 13, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2022

Keywords

Comments

These numbers were called Zetanacci numbers by Bruckman (1983).
The distinct values of the terms are in A065108.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Fibonacci[e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = fibonacci(f[k,2]+1); f[k,2]=1); factorback(f); \\ Michel Marcus, Feb 05 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X - X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022
  • Python
    from math import prod
    from sympy import factorint, fibonacci
    def a(n): return prod(fibonacci(e+1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 05 2022
    

Formula

Dirichlet g.f.: Product_{p prime} 1/(1 - p^(-s) - p^(-2*s)).
a(n) = 1 if and only if n is a squarefree number (A005117).
Sum_{k=1..n} a(k) ~ c * n, where c = A065488 = Product_{p primes} (1 + 1/(p^2 - p - 1)) = 2.67411272557... - Vaclav Kotesovec, Feb 10 2022