cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351223 a(n) is the number of triangular arrays containing the first 3*(n - 1) positive integers arranged with number n on each side and having different set of the sets of the side integers.

Original entry on oeis.org

1, 120, 7560, 369600, 15765750, 617512896, 22813670880, 807723671040, 27686621927250, 925166131890000, 30286238493551040, 974802747606105600, 30933063577681246800, 969808565876506272000, 30090926129273230320000, 925249170367839629537280, 28225069296255264089522250
Offset: 2

Views

Author

Stefano Spezia, Feb 05 2022

Keywords

Examples

			a(2) = 1:
    1
   / \
  2 - 3
with the set of the sets of the side integers S = {{1, 2}, {1, 3}, {2, 3}}.
		

Crossrefs

Programs

  • Mathematica
    Table[(3(n-1))!/(6((n-2)!)^3),{n,2,18}]

Formula

a(n) = (3*(n - 1))!/(6*((n - 2)!)^3).
With F the generalized hypergeometric function: (Start)
O.g.f.: x^2*F([4/3, 5/3, 2], [1, 1], 27*x).
E.g.f.: x^2*F([4/3, 5/3, 2], [1, 1, 3], 27*x)/2. (End)
a(n) ~ 3^(3*n-7/2)*n^2/(4*Pi). - Stefano Spezia, Dec 25 2024
D-finite with recurrence (n-2)^3*a(n) -3*(3*n-5)*(n-1)*(3*n-4)*a(n-1)=0. - R. J. Mathar, Feb 27 2025