cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351229 Numbers k for which A003415(k) >= A276086(k) > k, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

2349, 2376, 2400, 2552, 4656, 4680, 4832, 4860, 6936, 6960, 30056, 30080, 30100, 30150, 30256, 30282, 32382, 32384, 32562, 36960, 60080, 510568, 510592, 510996, 511020, 511152, 511176, 511200, 512940, 513096, 513120, 513252, 513272, 515172, 515196, 515352, 515376, 515552, 517448, 517472, 519750, 540636, 540660, 540792
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Comments

The terms appear to come in batches dictated by their primorial base expansion (A049345), these terms having only low digit values in that base.

Crossrefs

Intersection of A351227 and A351228.
Positions of ones in A351089.

Programs

  • Mathematica
    Select[Range[550000], Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] >= m > #] &] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA351229(n) = { my(u=A276086(n)); ((u > n) && (A003415(n) >= u)); };