A351237 Numbers M such that 83 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
137, 13698630137, 1369863013698630137, 136986301369863013698630137, 13698630136986301369863013698630137, 1369863013698630136986301369863013698630137, 136986301369863013698630136986301369863013698630137
Offset: 1
Examples
83 * 137 = 1[137]1, hence 137 is a term. 83 * 13698630137 = 1[13698630137]1, and 13698630137 is another term.
References
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
Links
- Index entries for linear recurrences with constant coefficients, signature (100000001,-100000000).
Crossrefs
Programs
-
Maple
seq((10^(8*n-4)+1)/73, n=1..15);
-
Mathematica
Table[(10^(8*n-4)+1)/73, {n, 1, 7}] (* Amiram Eldar, Feb 06 2022 *) LinearRecurrence[{100000001,-100000000},{137,13698630137},20] (* Harvey P. Dale, Nov 01 2022 *)
Formula
a(n) = (10^(8*n-4)+1)/73 for n >= 1.
Comments