A351239 Numbers M such that 101 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
11, 10989011, 10989010989011, 10989010989010989011, 10989010989010989010989011, 10989010989010989010989010989011, 10989010989010989010989010989010989011, 10989010989010989010989010989010989010989011, 10989010989010989010989010989010989010989010989011
Offset: 1
Examples
101 * 11 = 1[11]1, hence 11 is a term. 101 * 10989011 = 1[10989011]1 and 10989011 is another term.
References
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
Links
- Index entries for linear recurrences with constant coefficients, signature (1000001,-1000000).
Crossrefs
Programs
-
Maple
seq((10^(6*n-3)+1)/91, n=1..15);
-
Mathematica
Table[(10^(6*n - 3) + 1)/91, {n, 1, 9}] (* Amiram Eldar, Feb 06 2022 *) LinearRecurrence[{1000001,-1000000},{11,10989011},10] (* Harvey P. Dale, Sep 12 2022 *)
Formula
a(n) = (10^(6*n-3)+1)/91 for n >= 1.
Comments