A351247 a(n) = n^7 * Sum_{p|n, p prime} 1/p^7.
0, 1, 1, 128, 1, 2315, 1, 16384, 2187, 78253, 1, 296320, 1, 823671, 80312, 2097152, 1, 5062905, 1, 10016384, 825730, 19487299, 1, 37928960, 78125, 62748645, 4782969, 105429888, 1, 181139311, 1, 268435456, 19489358, 410338801, 901668, 648051840, 1, 893871867, 62750704
Offset: 1
Keywords
Examples
a(6) = 2315; a(6) = 6^7 * Sum_{p|6, p prime} 1/p^7 = 279936 * (1/2^7 + 1/3^7) = 2315.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Array[#^7*DivisorSum[#, 1/#^7 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)
Formula
a(A000040(n)) = 1.
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^7, where c = A010051.
a(p^k) = p^(7*k-7) for p prime and k>=1. (End)
Comments