cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351249 a(n) = n^9 * Sum_{p|n, p prime} 1/p^9.

Original entry on oeis.org

0, 1, 1, 512, 1, 20195, 1, 262144, 19683, 1953637, 1, 10339840, 1, 40354119, 1972808, 134217728, 1, 397498185, 1, 1000262144, 40373290, 2357948203, 1, 5293998080, 1953125, 10604499885, 387420489, 20661308928, 1, 39453437071, 1, 68719476736, 2357967374, 118587877009, 42306732
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^9. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 20195; a(6) = 6^9 * Sum_{p|6, p prime} 1/p^9 = 10077696 * (1/2^9 + 1/3^9) = 20195.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), this sequence (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^9*DivisorSum[#, 1/#^9 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)
  • Python
    from sympy import primefactors
    def A351249(n): return sum((n//p)**9 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069094(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^9, where c = A010051.
a(p^k) = p^(9*k-9) for p prime and k>=1. (End)