A351249 a(n) = n^9 * Sum_{p|n, p prime} 1/p^9.
0, 1, 1, 512, 1, 20195, 1, 262144, 19683, 1953637, 1, 10339840, 1, 40354119, 1972808, 134217728, 1, 397498185, 1, 1000262144, 40373290, 2357948203, 1, 5293998080, 1953125, 10604499885, 387420489, 20661308928, 1, 39453437071, 1, 68719476736, 2357967374, 118587877009, 42306732
Offset: 1
Keywords
Examples
a(6) = 20195; a(6) = 6^9 * Sum_{p|6, p prime} 1/p^9 = 10077696 * (1/2^9 + 1/3^9) = 20195.
Crossrefs
Programs
-
Mathematica
Array[#^9*DivisorSum[#, 1/#^9 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)
-
Python
from sympy import primefactors def A351249(n): return sum((n//p)**9 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
Formula
a(A000040(n)) = 1.
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^9, where c = A010051.
a(p^k) = p^(9*k-9) for p prime and k>=1. (End)
Comments