A351256 Maximal exponent in the prime factorization of A351255(n).
0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 3, 4, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6
Offset: 1
Keywords
Examples
A328116(27) = 50, and A049345(50) = "1310", where the largest primorial base digit is 3, therefore a(27) = 3. Equally, A351255(27) = 2625 = 3 * 5^3 * 7, thus A051903(2625) = 3 and a(27) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..105368 (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)
Crossrefs
Programs
-
PARI
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); }; for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(A051903(u), ", ")));
Comments