A351257 Least k such that the k-th arithmetic derivative of A351255(n) is zero.
1, 2, 2, 3, 4, 5, 2, 3, 3, 4, 5, 6, 5, 6, 2, 5, 4, 3, 4, 3, 3, 4, 5, 4, 4, 7, 12, 6, 7, 4, 4, 4, 4, 4, 4, 4, 5, 8, 8, 6, 5, 12, 5, 5, 5, 8, 10, 6, 6, 6, 7, 6, 7, 7, 8, 12, 8, 12, 2, 3, 6, 3, 3, 4, 4, 5, 4, 4, 4, 8, 5, 5, 6, 12, 6, 3, 3, 7, 3, 3, 10, 3, 4, 5, 5, 4, 4, 6, 4, 4, 4, 6, 5, 5, 6, 5, 9, 5, 6, 10, 7, 7, 7
Offset: 1
Examples
From A351255(27) = 2625 it takes 12 iterations of map x -> A003415(x) to reach zero, as 2625 -> 2825 -> 1155 -> 886 -> 445 -> 94 -> 49 -> 14 -> 9 -> 6 -> 5 -> 1 -> 0, therefore a(27) = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..105368 (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)
Programs
-
PARI
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); }; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(c, ", ")));
Comments