A351259 First noncomposite number reached when iterating the map x -> x', when starting from x = A351255(n). Here x' is the arithmetic derivative of x, A003415.
1, 2, 3, 5, 5, 7, 5, 7, 31, 7, 41, 71, 191, 2711, 7, 5, 7, 41, 103, 59, 71, 271, 71, 1031, 2887, 439, 5, 5, 7, 631, 251, 401, 3491, 1031, 1319, 17747, 9733, 1931, 16319, 77351, 131, 5, 419, 7079, 22343, 971, 5981, 6861581, 419, 18731, 11903, 33937, 7079, 15287, 15287, 6143, 6944111, 1415651, 11, 13, 5, 61, 103, 401, 631
Offset: 1
Examples
From A351255(27) = 2625 it takes 12 iterations of the map x -> A003415(x) to reach zero: 2625 -> 2825 -> 1155 -> 886 -> 445 -> 94 -> 49 -> 14 -> 9 -> 6 -> 5 -> 1 -> 0. Two steps before the final zero is the first and only prime on the path, 5, therefore a(27) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12878 (computed for all 17-smooth terms of A351255)
- Antti Karttunen, 105368 initial terms, without indices (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)
- Victor Ufnarovski and Bo Ã…hlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
Programs
-
PARI
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A351078(n) = { while(n>1&&!isprime(n), n = A003415checked(n)); (n); }; for(n=0, 2^9, u=A276086(n); p = A351078(u); if(p>0,print1(p, ", ")));
Comments