cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351261 a(n) is the largest term encountered on the path to 0 when iterating the map x -> x', and starting from x = A351255(n). Here x' means the arithmetic derivative of x, A003415.

Original entry on oeis.org

1, 2, 3, 6, 9, 21, 5, 10, 31, 25, 185, 375, 1075, 12575, 7, 14, 21, 42, 165, 70, 105, 318, 365, 1905, 5385, 2175, 2825, 49, 98, 1281, 490, 735, 7287, 2905, 3745, 17747, 16975, 43075, 107150, 370705, 686, 3871, 5145, 29953, 115395, 1001035, 4475975, 11285575, 5145, 115591, 176645, 234955, 40817, 156065, 156065, 1193297
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

At point n=104776, where a(104776) = 6121569170076203821789253759640129542895524171255601586612637263670135
and A351255(104776) = 144537549602172859330715888995919357193998109417395984504745753750, the ratio a(n)/A351255(n) obtains another record (~ 42352.7947), which motivates a conjecture that it is not bound from above. See also A351079.

Examples

			From A351255(27) = 2625 it takes 12 iterations of map x -> A003415(x) to reach zero: 2625 -> 2825 -> 1155 -> 886 -> 445 -> 94 -> 49 -> 14 -> 9 -> 6 -> 5 -> 1 -> 0. The largest term on this path is 2825, therefore a(27) = 2825.
		

Crossrefs

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A351079(n) = { my(m=n); while(n>1, n = A003415checked(n); m = max(m,n)); if(n,m); };
    for(n=0, 2^9, u=A276086(n); m = A351079(u); if(m>0,print1(m, ", ")));

Formula

a(n) = A351079(A351255(n)).