cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351280 a(n) = Sum_{k=0..n} k! * k^k * Stirling1(n,k).

Original entry on oeis.org

1, 1, 7, 140, 5254, 318854, 28455182, 3506576856, 570360248856, 118356589567440, 30512901324706608, 9566812017770347152, 3584662956711860108352, 1581905384865801328253712, 812047187127758913474118032, 479763784808095613489811245568
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^k * StirlingS1[n, k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^k*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*log(1+x))^k)))

Formula

E.g.f.: Sum_{k>=0} (k * log(1+x))^k.
a(n) ~ exp(-exp(-1)/2) * n! * n^n. - Vaclav Kotesovec, Feb 06 2022

A351334 a(n) = Sum_{k=0..n} k! * (-k)^k * Stirling2(n,k).

Original entry on oeis.org

1, -1, 7, -139, 5227, -317491, 28352347, -3495615859, 568791063547, -118065959980051, 30445266606199387, -9547490385298102579, 3578014749635903623867, -1579193384981544127824211, 810752966831581612807206427, -479049438742420410992820125299
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k!*(-k)^k*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(1-exp(x)))^k)))

Formula

E.g.f.: Sum_{k>=0} (k * (1 - exp(x)))^k.
Showing 1-2 of 2 results.