A351292 Number of patterns of length n with all distinct run-lengths.
1, 1, 1, 5, 5, 9, 57, 61, 109, 161, 1265, 1317, 2469, 3577, 5785, 43901, 47165, 86337, 127665, 204853, 284197, 2280089, 2398505, 4469373, 6543453, 10570993, 14601745, 22502549, 159506453, 171281529, 314077353, 462623821, 742191037, 1031307185, 1580543969, 2141246229
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 9 patterns: (1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1) (1,1,2) (1,1,1,2) (1,1,1,1,2) (1,2,2) (1,2,2,2) (1,1,1,2,2) (2,1,1) (2,1,1,1) (1,1,2,2,2) (2,2,1) (2,2,2,1) (1,2,2,2,2) (2,1,1,1,1) (2,2,1,1,1) (2,2,2,1,1) (2,2,2,2,1) The a(6) = 57 patterns grouped by sum: 111111 111112 111122 112221 111223 111233 112333 122333 111211 111221 122211 111322 111332 113332 133322 112111 122111 211122 112222 112223 122233 221333 211111 221111 221112 211222 113222 133222 223331 221113 122222 211333 333122 222112 211133 222133 333221 222211 221222 222331 223111 222113 233311 311122 222122 331222 322111 222221 332221 222311 333112 233111 333211 311222 322211 331112 332111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
The version for runs instead of run-lengths is A351200.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A131689 counts patterns by number of distinct parts.
Counting words with all distinct runs:
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Length/@Split[#]&]],{n,0,6}]
-
PARI
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))} R(u,k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]} seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022
Formula
From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)
Extensions
Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022
Comments