cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351301 a(n) = n^6 * Product_{p|n, p prime} (1 + 1/p^6).

Original entry on oeis.org

1, 65, 730, 4160, 15626, 47450, 117650, 266240, 532170, 1015690, 1771562, 3036800, 4826810, 7647250, 11406980, 17039360, 24137570, 34591050, 47045882, 65004160, 85884500, 115151530, 148035890, 194355200, 244156250, 313742650, 387951930, 489424000, 594823322, 741453700
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 6th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), this sequence (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(6*e) + p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^6);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^6*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^6 * mu(n/d)^2.
a(n) = n^6 * Sum_{d|n} mu(d)^2 / d^6.
Multiplicative with a(p^e) = p^(6*e) + p^(6*e-6). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-6)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^7 * zeta(7) / (7 * zeta(14)) = 2606175 * n^7 * zeta(7) / (2 * Pi^14).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^6/(p^12-1)) = 1.01709659289559607702424749979498914920118274875188346777424441790304... (End)