cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351304 a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).

Original entry on oeis.org

1, 513, 19684, 262656, 1953126, 10097892, 40353608, 134479872, 387440172, 1001953638, 2357947692, 5170120704, 10604499374, 20701400904, 38445332184, 68853694464, 118587876498, 198756808236, 322687697780, 513000262656, 794320419872, 1209627165996, 1801152661464, 2647101800448
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 9th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), this sequence (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 28 2024

Formula

a(n) = Sum_{d|n} d^9 * mu(n/d)^2.
a(n) = n^9 * Sum_{d|n} mu(d)^2 / d^9.
Multiplicative with a(p^e) = p^(9*e) + p^(9*e-9). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^10 * zeta(10) / (10 * zeta(20)) = 3273645375 * n^10 / (349222 * Pi^10).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^9/(p^18-1)) = 1.002004575331916689985388864168116922608947780516939765639888137700557... (End)