A351322 Number T(n,k) of tilings of a 3k X n rectangle with right trominoes.
1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 0, 1, 1, 0, 8, 8, 4, 1, 1, 0, 16, 0, 18, 0, 1, 1, 0, 32, 64, 88, 72, 8, 1, 1, 0, 64, 0, 468, 384, 162, 0, 1, 1, 0, 128, 512, 2672, 8544, 4312, 520, 16, 1, 1, 0, 256, 0, 16072, 76800, 118586, 22656, 1514, 0, 1, 1, 0, 512, 4096, 100064, 1168512, 3403624, 1795360, 204184, 4312, 32, 1
Offset: 0
Examples
6 X 2 rectangle: 4 tilings ___ ___ ___ ___ | _| | _| |_ | |_ | |_| | |_| | | |_| | |_| |___| |___| |___| |___| | _| |_ | | _| |_ | |_| | | |_| |_| | | |_| |___| |___| |___| |___| . Table T(n,k) begins: n\k__0__1______2_________3_____________4 0: 1 1 1 1 1 1: 1 0 0 0 0 2: 1 2 4 8 16 3: 1 0 8 0 64 4: 1 4 18 88 468 5: 1 0 72 384 8544 6: 1 8 162 4312 118586 7: 1 0 520 22656 1795360 8: 1 16 1514 204184 29986082 9: 1 0 4312 1193600 467966840 10: 1 32 13242 9567192 7758809670 11: 1 0 39088 63112256 124693887784
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..495 (first 31 antidiagonals).
- Gerhard Kirchner, Tiling algorithm
- Gerhard Kirchner, Maxima Code
- Gerhard Kirchner, More sequences
- Cristopher Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
Programs
-
Maxima
See Maxima Code link.
Comments