cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351355 Number of ways the numbers from 1..n do not divide numbers from n+1..2n.

Original entry on oeis.org

0, 1, 3, 8, 13, 21, 31, 42, 55, 71, 87, 107, 128, 150, 174, 203, 231, 260, 294, 328, 364, 404, 442, 486, 530, 576, 624, 674, 726, 780, 838, 895, 953, 1017, 1079, 1146, 1216, 1284, 1354, 1430, 1505, 1583, 1663, 1745, 1827, 1913, 2001, 2091, 2184, 2275, 2371, 2471, 2567, 2669, 2773
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 08 2022

Keywords

Examples

			a(5) = 13; there are 13 ways the numbers from 1..5 do not divide the numbers from 6..10. 2 does not divide 7,9 (2 ways) + 3 does not divide 7,8,10 (3 ways) + 4 does not divide 6,7,9,10 (4 ways) + 5 does not divide 6,7,8,9 (4 ways) = 13 ways.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; n^2 - add(floor(2*n/i) - floor(n/i),i=1..n) end proc:
    map(f, [$1..100]); # Robert Israel, Aug 26 2025
  • Python
    def A351355(n): return 0 if n == 1 else n*n-sum(2*n//k for k in range(2,2*n))+sum(n//k for k in range(2,n)) # Chai Wah Wu, Feb 08 2022
    
  • Python
    from math import isqrt
    def A351355(n): return ((t:=isqrt(m:=n<<1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1)+n*(n+1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{k=1..n} Sum_{i=n+1..2n} sign(i mod k).
a(n) = n*(n+1) + A006218(n) - A006218(2n). - Chai Wah Wu, Feb 08 2022