cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351362 Number of ways the numbers from 1..n do not divide the numbers from n..2n-1.

Original entry on oeis.org

0, 1, 4, 8, 14, 22, 32, 42, 57, 72, 88, 108, 129, 151, 177, 203, 232, 262, 295, 329, 367, 405, 443, 487, 532, 577, 627, 675, 727, 783, 839, 895, 956, 1018, 1082, 1148, 1217, 1285, 1357, 1431, 1506, 1586, 1664, 1746, 1832, 1914, 2002, 2092, 2186, 2277, 2374, 2472, 2568, 2672
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 08 2022

Keywords

Examples

			a(5) = 14; there are 14 ways that the numbers 1..5 do not divide the numbers 5..9. 2 does not divide 5,7,9 (3 ways) + 3 does not divide 5,7,8 (3 ways) + 4 does not divide 5,6,7,9 (4 ways) + 5 does not divide 6,7,8,9 (4 ways) = 14 ways.
		

Crossrefs

Programs

  • Python
    def A351362(n): return 1 if n == 2 else n*n-1-sum((2*n-1)//k for k in range(2,2*n-1))+sum((n-1)//k for k in range(2,n-1)) # Chai Wah Wu, Feb 08 2022
    
  • Python
    from math import isqrt
    def A351362(n): return ((t:=isqrt(m:=(n<<1)-1))+(s:=isqrt(r:=n-1)))*(t-s)+(sum(r//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1)+n*(n+1)-1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{k=1..n} Sum_{i=n..2n-1} sign(i mod k).
a(n) = n*(n+1) - 1 + A006218(n-1) - A006218(2n-1). - Chai Wah Wu, Feb 08 2022