A351380 Table read by rows: T(n,k) is the number of integers in the interval [2^(n-1), 2^n - 1] that have the k-th least prime signature.
1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 3, 1, 1, 0, 5, 1, 3, 1, 3, 1, 1, 1, 0, 7, 1, 11, 0, 5, 0, 3, 1, 1, 1, 1, 1, 0, 13, 1, 19, 1, 9, 1, 2, 7, 0, 1, 2, 3, 1, 2, 1, 1, 0, 23, 1, 39, 0, 14, 0, 8, 16, 1, 2, 3, 9, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 43, 2, 73, 1, 27, 0, 11, 37, 0, 2, 6, 20, 0, 2, 3, 8, 0, 2, 4, 2, 4, 0, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1
Examples
The first 7 rows are shown in the body of the table below. Across the top of the table are the terms of A025487, whose k-th term is the smallest integer having the k-th prime signature. . A025487(k)| 1 2 4 6 8 12 16 24 30 32 36 48 60 64 72 96 120 ... ----------+------------------------------------------------------- n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... ----------+------------------------------------------------------- 1 | 1 2 | 0 2 3 | 0 2 1 1 4 | 0 2 1 3 1 1 5 | 0 5 1 3 1 3 1 1 1 6 | 0 7 1 11 0 5 0 3 1 1 1 1 1 7 | 0 13 1 19 1 9 1 2 7 0 1 2 3 1 2 1 1 . E.g., the 9 terms in row n=5 are 0, 5, 1, 3, 1, 3, 1, 1, 1 because, of the 16 integers in the interval [2^(5-1), 2^5 - 1] = [16, 31]: - 0 have prime signature 1 (since all are > 1) - 5 are primes - 1 is the square of a prime - 3 are squarefree semiprimes etc., as shown below (where p, q, and r represent distinct primes): . . prime OEIS k A025487(k) signature Annnnnn integers in [16, 31] T(5,k) - ---------- --------- ------- -------------------- ------ 1 1 1 - (none) 0 2 2 p A000040 17, 19, 23, 29, 31 5 3 4 p^2 A001248 25 1 4 6 p * q A006881 21, 22, 26 3 5 8 p^3 A030078 27 1 6 12 p^2 * q A054753 18, 20, 28 3 7 16 p^4 A030514 16 1 8 24 p^3 * q A065036 24 1 9 30 p * q * r A007304 30 1
Formula
Sum_{k>=1} T(n,k) = 2^n.
T(n,2) = A162145(n) for n > 1.
Comments