A351381 Table read by downward antidiagonals: T(n,k) = n*(k+1)^2.
4, 9, 8, 16, 18, 12, 25, 32, 27, 16, 36, 50, 48, 36, 20, 49, 72, 75, 64, 45, 24, 64, 98, 108, 100, 80, 54, 28, 81, 128, 147, 144, 125, 96, 63, 32, 100, 162, 192, 196, 180, 150, 112, 72, 36, 121, 200, 243, 256, 245, 216, 175, 128, 81, 40, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44
Offset: 1
Examples
Table begins: n \ k | 1 2 3 4 5 6 7 8 9 10 ---------------------------------------------------------------------------- 1 | 4 9 16 25 36 49 64 81 100 121 2 | 8 18 32 50 72 98 128 162 200 242 3 | 12 27 48 75 108 147 192 243 300 363 4 | 16 36 64 100 144 196 256 324 400 484 5 | 20 45 80 125 180 245 320 405 500 605 6 | 24 54 96 150 216 294 384 486 600 726 7 | 28 63 112 175 252 343 448 567 700 847 8 | 32 72 128 200 288 392 512 648 800 968 9 | 36 81 144 225 324 441 576 729 900 1089 10 | 40 90 160 250 360 490 640 810 1000 1210 ............................................................................ T(3,4) = 75 = 3*(4+1)^2 corresponds to S(3*4,4) = S(12,4) = (12+4) + (12-4) + (12*4) + 12/4 = 75. S(10,5) = (10+5) + (10-5) + (10*5) + (10/5) = T(10/5,5) = T(2,5) = 72.
References
- I. Perelman, L'Algèbre Récréative, Chapitre IV, Les équations de Diophante, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
- Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.
Links
- Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.
- Wikipedia, Yakov Perelman.
Crossrefs
Cf. A013929.
Cf. A000290 \ {0,1} (row 1), A001105 \ {0,2} (row 2), A033428 \ {0,3} (row 3), A016742 \ {0,4} (row 4), A033429 \ {0,5} (row 5), A033581 \ {0,6} (row 6).
Cf. A008586 \ {0} (column 1), A008591 \ {0} (column 2), A008598 \ {0} (column 3), A008607 \ {0} (column 4), A044102 \ {0} (column 5).
Cf. A045991 \ {0} (diagonal).
Programs
-
Mathematica
T[n_, k_] := n*(k + 1)^2; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Mar 29 2022 *)
Formula
T(n,k) = n*(k+1)^2.
T(n,n) = (n+1)^3 - (n+1)^2 = A045991(n+1) for n >= 1.
G.f.: x*(1 + y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Mar 31 2022
Comments