A351394 Number of divisors of n that are either squarefree, prime powers, or both.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 8, 2, 6, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 7, 4, 8, 2, 5, 4, 8, 2, 7, 2, 4, 5, 5, 4, 8, 2, 7, 5, 4, 2, 9, 4, 4, 4, 6, 2, 9, 4, 5, 4, 4, 4
Offset: 1
Examples
a(36) = 6; 36 has 4 squarefree divisors 1,2,3,6 (where the primes 2 and 3 are both squarefree and 1st powers of primes) and 2 (additional) divisors that are powers of primes, 2^2 and 3^2.
Links
Programs
-
Mathematica
a[n_] := Module[{e = FactorInteger[n][[;;, 2]], nu, omega}, nu = Length[e]; omega = Total[e]; 2^nu + omega - nu]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
-
PARI
a(n) = {my(f = factor(n), nu = omega(f), om = bigomega(f)); 2^nu + om - nu;} \\ Amiram Eldar, Oct 06 2023
Formula
a(n) = Sum_{d|n} sign(mu(d)^2 + [omega(d) = 1]).
a(n) = Sum_{d|n} (mu(d)^2 + [omega(d) = 1]*(1 - mu(d)^2)).