A351415 Intersection of Beatty sequences for (1+sqrt(5))/2 and sqrt(5).
4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, 46, 51, 53, 55, 58, 64, 67, 69, 71, 76, 80, 82, 84, 87, 93, 98, 100, 105, 111, 114, 116, 118, 122, 127, 129, 131, 134, 140, 145, 147, 152, 156, 158, 160, 163, 165, 169, 174, 176, 181, 187, 190, 192, 194, 199
Offset: 1
Keywords
Examples
The two Beatty sequences are (1,3,4,6,8,9,11,12,14,...) and (2,4,6,8,11,13,15,17,...), with common terms forming the sequence (4,6,8,11,...).
Crossrefs
Programs
-
Mathematica
z = 200; r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *) u1 = Take[Complement[Range[1000], u], z] (* A001950 *) r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *) v1 = Take[Complement[Range[1000], v], z] (* A108598 *) Intersection[u, v] (* A351415 *) Intersection[u, v1] (* A356101 *) Intersection[u1, v] (* A356102 *) Intersection[u1, v1] (* A356103 *)
Comments