cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A356104 a(n) = A000201(A022839(n)).

Original entry on oeis.org

3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, 50, 53, 56, 61, 64, 67, 71, 74, 79, 82, 85, 88, 93, 97, 100, 103, 108, 111, 114, 118, 122, 126, 129, 132, 135, 140, 144, 147, 150, 155, 158, 161, 165, 169, 173, 176, 179, 184, 187, 190, 194, 197, 202, 205, 208
Offset: 1

Views

Author

Clark Kimberling, Sep 08 2022

Keywords

Comments

This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) u' o v'.
Every positive integer is in exactly one of the four sequences. For the reverse composites, v o u, v' o u, v o u', v' o u', see A356217 to A356220.
Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and
1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.
For A356104, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.

Examples

			(1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356105, A356106, A356107, A351415 (intersections), A356217 (reverse composites).

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356106 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)

A356217 a(n) = A022839(A000201(n)).

Original entry on oeis.org

2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, 46, 49, 53, 55, 60, 64, 67, 71, 73, 78, 82, 84, 89, 93, 96, 100, 102, 107, 111, 114, 118, 122, 125, 129, 131, 136, 140, 143, 147, 149, 154, 158, 160, 165, 169, 172, 176, 178, 183, 187, 190, 194, 196, 201, 205, 207
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2022

Keywords

Comments

This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. For the reverse composites, u o v, u o v', u' o v, u' o v', see A356104 to A356107.
Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and
1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.
For A356217 u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.

Examples

			(1)  v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2)  v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3)  v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4)  v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415 (intersections), A356104 (reverse composites), A356218, A190509, A356220.

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    Table[v[[u[[n]]]], {n, 1, z/4}]   (* A356217 *)
    Table[v1[[u[[n]]]], {n, 1, z/4}]  (* A356218 *)
    Table[v[[u1[[n]]]], {n, 1, z/4}]  (* A190509 *)
    Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
  • Python
    from math import isqrt
    def A356217(n): return isqrt(5*(n+isqrt(5*n**2)>>1)**2) # Chai Wah Wu, Oct 14 2022

A356107 a(n) = A001950(A108598(n)).

Original entry on oeis.org

2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, 60, 65, 70, 73, 78, 83, 89, 94, 96, 102, 107, 112, 117, 123, 125, 130, 136, 141, 146, 149, 154, 159, 164, 170, 172, 178, 183, 188, 193, 196, 201, 206, 212, 217, 222, 225, 230, 235, 240, 246, 248, 253, 259, 264
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2022

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. See A356104.

Examples

			(1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356105, A356106, A351415 (intersections), A356217 (reverse composites).

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356106 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)

A356220 a(n) = A108598(A001950(n)).

Original entry on oeis.org

3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, 61, 65, 70, 74, 79, 85, 88, 94, 97, 103, 108, 112, 117, 123, 126, 132, 135, 141, 146, 150, 155, 161, 164, 170, 173, 179, 184, 188, 193, 197, 202, 208, 211, 217, 222, 226, 231, 235, 240, 246, 249, 255, 258, 264
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2022

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. See A356217.

Examples

			(1)  v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2)  v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3)  v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4)  v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
		

Crossrefs

Cf. A000201, A001950, A022839, A108598, A351415 (intersections), A356104 (reverse composites), A356217, A356218, A356219.

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[v[[u[[n]]]], {n, 1, z/4}]   (* A356217 *)
    Table[v1[[u[[n]]]], {n, 1, z/4}]  (* A356218 *)
    Table[v[[u1[[n]]]], {n, 1, z/4}]  (* A190509 *)
    Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)

A356101 Intersection of A000201 and A022839.

Original entry on oeis.org

1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, 43, 45, 48, 50, 56, 59, 61, 63, 66, 72, 74, 77, 79, 85, 88, 90, 92, 95, 97, 101, 103, 106, 108, 110, 113, 119, 121, 124, 126, 132, 135, 137, 139, 142, 144, 148, 150, 153, 155, 161, 166, 168, 171, 173, 177, 179
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Comments

This is the second of four sequences that partition the positive integers. See A351415.

Examples

			Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers.  Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1)  u ^ v = intersection of u and v (in increasing order);
(2)  u ^ v';
(3)  u' ^ v;
(4)  u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1)  u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) =  A351415
(2)  u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) =  A356101
(3)  u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4)  u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415, A356102, A356103, A356104 (results of composition instead of intersections), A190509 (composites, reversed order).

Programs

  • Mathematica
    z = 200;
    r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}]  (* A000201 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001950 *)
    r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022839 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A108598 *)
    Intersection[u, v]   (* A351415 *)
    Intersection[u, v1]  (* A356101 *)
    Intersection[u1, v]  (* A356102 *)
    Intersection[u1, v1] (* A356103 *)

A356102 Intersection of A001950 and A022839.

Original entry on oeis.org

2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, 89, 91, 96, 102, 107, 109, 120, 125, 136, 138, 143, 149, 154, 167, 172, 178, 183, 185, 196, 201, 212, 214, 219, 225, 230, 243, 248, 259, 261, 272, 277, 290, 295, 301, 306, 308, 319, 324, 326, 328, 330, 333, 335
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Comments

This is the third of four sequences that partition the positive integers. See A351415.

Examples

			Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers.  Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1)  u ^ v = intersection of u and v (in increasing order);
(2)  u ^ v';
(3)  u' ^ v;
(4)  u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1)  u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) =  A351415
(2)  u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) =  A356101
(3)  u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4)  u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415, A356101, A356103, A356104 (results of composition instead of intersections), A190509 (composites, reversed order).

Programs

  • Mathematica
    z = 200;
    r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}]  (* A000201 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001950 *)
    r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022839 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A108598 *)
    Intersection[u, v]   (* A351415 *)
    Intersection[u, v1]  (* A356101 *)
    Intersection[u1, v]  (* A356102 *)
    Intersection[u1, v1] (* A356103 *)

A356103 Intersection of A001950 and A108598.

Original entry on oeis.org

5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, 57, 65, 68, 70, 75, 81, 83, 86, 94, 99, 104, 112, 115, 117, 123, 128, 130, 133, 141, 146, 151, 157, 159, 162, 164, 170, 175, 180, 188, 191, 193, 198, 204, 206, 209, 217, 222, 227, 233, 235, 238, 240, 246, 251
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. See A351415.

Examples

			Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers.  Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1)  u ^ v = intersection of u and v (in increasing order);
(2)  u ^ v';
(3)  u' ^ v;
(4)  u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1)  u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) =  A351415
(2)  u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) =  A356101
(3)  u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4)  u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415, A356101, A356102, A356104 (results of composition instead of intersections), A190509 (composites, reversed order).

Programs

  • Mathematica
    z = 200;
    r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}]  (* A000201 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001950 *)
    r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022839 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A108598 *)
    Intersection[u, v]   (* A351415 *)
    Intersection[u, v1]  (* A356101 *)
    Intersection[u1, v]  (* A356102 *)
    Intersection[u1, v1] (* A356103 *)

A356105 a(n) = A000201(A108598(n)).

Original entry on oeis.org

1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, 40, 43, 45, 48, 51, 55, 58, 59, 63, 66, 69, 72, 76, 77, 80, 84, 87, 90, 92, 95, 98, 101, 105, 106, 110, 113, 116, 119, 121, 124, 127, 131, 134, 137, 139, 142, 145, 148, 152, 153, 156, 160, 163, 166, 168, 171
Offset: 1

Views

Author

Clark Kimberling, Sep 08 2022

Keywords

Comments

This is the second of four sequences that partition the positive integers. See A356104.

Examples

			(1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356106, A356107, A351415 (intersections), A356217 (reverse composites).

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356106 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)

A356218 a(n) = A108598(A000201(n)).

Original entry on oeis.org

1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, 37, 39, 43, 45, 48, 52, 54, 57, 59, 63, 66, 68, 72, 75, 77, 81, 83, 86, 90, 92, 95, 99, 101, 104, 106, 110, 113, 115, 119, 121, 124, 128, 130, 133, 137, 139, 142, 144, 148, 151, 153, 157, 159, 162, 166, 168, 171
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2022

Keywords

Comments

This is the second of four sequences that partition the positive integers. See A356217.

Examples

			(1)  v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2)  v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3)  v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4)  v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415 (intersections), A356104 (reverse composites), A356217, A190509, A356220.

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[v[[u[[n]]]], {n, 1, z/4}]   (* A356217 *)
    Table[v1[[u[[n]]]], {n, 1, z/4}]  (* A356218 *)
    Table[v[[u1[[n]]]], {n, 1, z/4}]  (* A190509 *)
    Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)

A356106 a(n) = A001950(A022839(n)).

Original entry on oeis.org

5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, 75, 81, 86, 91, 99, 104, 109, 115, 120, 128, 133, 138, 143, 151, 157, 162, 167, 175, 180, 185, 191, 198, 204, 209, 214, 219, 227, 233, 238, 243, 251, 256, 261, 267, 274, 280, 285, 290, 298, 303, 308, 314, 319
Offset: 1

Views

Author

Clark Kimberling, Sep 08 2022

Keywords

Comments

This is the third of four sequences that partition the positive integers. See A356104.

Examples

			(1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = this sequence
(4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356105, A356107, A351415 (intersections), A356217 (reverse composites).

Programs

  • Mathematica
    z = 1000;
    u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
    u1 = Complement[Range[Max[u]], u];  (* A001950 *)
    v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
    v1 = Complement[Range[Max[v]], v];  (* A108598 *)
    zz = 120;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* this sequence *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)

Extensions

Definition corrected by Georg Fischer, May 24 2024
Showing 1-10 of 10 results.