Original entry on oeis.org
3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, 50, 53, 56, 61, 64, 67, 71, 74, 79, 82, 85, 88, 93, 97, 100, 103, 108, 111, 114, 118, 122, 126, 129, 132, 135, 140, 144, 147, 150, 155, 158, 161, 165, 169, 173, 176, 179, 184, 187, 190, 194, 197, 202, 205, 208
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Original entry on oeis.org
2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, 46, 49, 53, 55, 60, 64, 67, 71, 73, 78, 82, 84, 89, 93, 96, 100, 102, 107, 111, 114, 118, 122, 125, 129, 131, 136, 140, 143, 147, 149, 154, 158, 160, 165, 169, 172, 176, 178, 183, 187, 190, 194, 196, 201, 205, 207
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
-
from math import isqrt
def A356217(n): return isqrt(5*(n+isqrt(5*n**2)>>1)**2) # Chai Wah Wu, Oct 14 2022
Original entry on oeis.org
2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, 60, 65, 70, 73, 78, 83, 89, 94, 96, 102, 107, 112, 117, 123, 125, 130, 136, 141, 146, 149, 154, 159, 164, 170, 172, 178, 183, 188, 193, 196, 201, 206, 212, 217, 222, 225, 230, 235, 240, 246, 248, 253, 259, 264
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Original entry on oeis.org
3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, 61, 65, 70, 74, 79, 85, 88, 94, 97, 103, 108, 112, 117, 123, 126, 132, 135, 141, 146, 150, 155, 161, 164, 170, 173, 179, 184, 188, 193, 197, 202, 208, 211, 217, 222, 226, 231, 235, 240, 246, 249, 255, 258, 264
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
Original entry on oeis.org
1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, 43, 45, 48, 50, 56, 59, 61, 63, 66, 72, 74, 77, 79, 85, 88, 90, 92, 95, 97, 101, 103, 106, 108, 110, 113, 119, 121, 124, 126, 132, 135, 137, 139, 142, 144, 148, 150, 153, 155, 161, 166, 168, 171, 173, 177, 179
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, 89, 91, 96, 102, 107, 109, 120, 125, 136, 138, 143, 149, 154, 167, 172, 178, 183, 185, 196, 201, 212, 214, 219, 225, 230, 243, 248, 259, 261, 272, 277, 290, 295, 301, 306, 308, 319, 324, 326, 328, 330, 333, 335
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, 57, 65, 68, 70, 75, 81, 83, 86, 94, 99, 104, 112, 115, 117, 123, 128, 130, 133, 141, 146, 151, 157, 159, 162, 164, 170, 175, 180, 188, 191, 193, 198, 204, 206, 209, 217, 222, 227, 233, 235, 238, 240, 246, 251
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, 40, 43, 45, 48, 51, 55, 58, 59, 63, 66, 69, 72, 76, 77, 80, 84, 87, 90, 92, 95, 98, 101, 105, 106, 110, 113, 116, 119, 121, 124, 127, 131, 134, 137, 139, 142, 145, 148, 152, 153, 156, 160, 163, 166, 168, 171
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Original entry on oeis.org
1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, 37, 39, 43, 45, 48, 52, 54, 57, 59, 63, 66, 68, 72, 75, 77, 81, 83, 86, 90, 92, 95, 99, 101, 104, 106, 110, 113, 115, 119, 121, 124, 128, 130, 133, 137, 139, 142, 144, 148, 151, 153, 157, 159, 162, 166, 168, 171
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
Original entry on oeis.org
5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, 75, 81, 86, 91, 99, 104, 109, 115, 120, 128, 133, 138, 143, 151, 157, 162, 167, 175, 180, 185, 191, 198, 204, 209, 214, 219, 227, 233, 238, 243, 251, 256, 261, 267, 274, 280, 285, 290, 298, 303, 308, 314, 319
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = this sequence
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* this sequence *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Showing 1-10 of 10 results.
Comments