A190509
a(n) = n + [nr/s] + [nt/s] + [nu/s] where r=golden ratio, s=r^2, t=r^3, u=r^4, and [] represents the floor function.
Original entry on oeis.org
4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 69, 76, 80, 87, 91, 98, 105, 109, 116, 120, 127, 134, 138, 145, 152, 156, 163, 167, 174, 181, 185, 192, 199, 203, 210, 214, 221, 228, 232, 239, 243, 250, 257, 261, 268, 275, 279, 286, 290, 297, 304, 308, 315, 319, 326, 333, 337, 344, 351, 355, 362, 366, 373, 380, 384, 391, 398, 402, 409
Offset: 1
-
[3*Floor(n*(Sqrt(5)+1)/2) + n: n in [1..80]]; // Vincenzo Librandi, Nov 01 2018
-
r:=(1+sqrt(5))/2: s:=r^2: t:=r^3: u:=r^4: a:=n->n+floor(n*r/s)+floor(n*t/s)+floor(n*u/s): seq(a(n),n=1..70); # Muniru A Asiru, Nov 01 2018
-
(See A190508.)
Table[3 Floor[n (Sqrt[5] + 1) / 2] + n, {n, 1, 100}] (* Vincenzo Librandi, Nov 01 2018 *)
-
a(n) = 3*floor(n*(sqrt(5)+1)/2) + n; \\ Michel Marcus, Sep 10 2017; after Michel Dekking's formula
-
from math import isqrt
def A190509(n): return n+((m:=n+isqrt(5*n**2))&-2)+(m>>1) # Chai Wah Wu, Aug 10 2022
A351415
Intersection of Beatty sequences for (1+sqrt(5))/2 and sqrt(5).
Original entry on oeis.org
4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, 46, 51, 53, 55, 58, 64, 67, 69, 71, 76, 80, 82, 84, 87, 93, 98, 100, 105, 111, 114, 116, 118, 122, 127, 129, 131, 134, 140, 145, 147, 152, 156, 158, 160, 163, 165, 169, 174, 176, 181, 187, 190, 192, 194, 199
Offset: 1
The two Beatty sequences are (1,3,4,6,8,9,11,12,14,...) and (2,4,6,8,11,13,15,17,...), with common terms forming the sequence (4,6,8,11,...).
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, 46, 49, 53, 55, 60, 64, 67, 71, 73, 78, 82, 84, 89, 93, 96, 100, 102, 107, 111, 114, 118, 122, 125, 129, 131, 136, 140, 143, 147, 149, 154, 158, 160, 165, 169, 172, 176, 178, 183, 187, 190, 194, 196, 201, 205, 207
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
-
from math import isqrt
def A356217(n): return isqrt(5*(n+isqrt(5*n**2)>>1)**2) # Chai Wah Wu, Oct 14 2022
Original entry on oeis.org
2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, 60, 65, 70, 73, 78, 83, 89, 94, 96, 102, 107, 112, 117, 123, 125, 130, 136, 141, 146, 149, 154, 159, 164, 170, 172, 178, 183, 188, 193, 196, 201, 206, 212, 217, 222, 225, 230, 235, 240, 246, 248, 253, 259, 264
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Original entry on oeis.org
3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, 61, 65, 70, 74, 79, 85, 88, 94, 97, 103, 108, 112, 117, 123, 126, 132, 135, 141, 146, 150, 155, 161, 164, 170, 173, 179, 184, 188, 193, 197, 202, 208, 211, 217, 222, 226, 231, 235, 240, 246, 249, 255, 258, 264
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
Original entry on oeis.org
1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, 43, 45, 48, 50, 56, 59, 61, 63, 66, 72, 74, 77, 79, 85, 88, 90, 92, 95, 97, 101, 103, 106, 108, 110, 113, 119, 121, 124, 126, 132, 135, 137, 139, 142, 144, 148, 150, 153, 155, 161, 166, 168, 171, 173, 177, 179
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, 89, 91, 96, 102, 107, 109, 120, 125, 136, 138, 143, 149, 154, 167, 172, 178, 183, 185, 196, 201, 212, 214, 219, 225, 230, 243, 248, 259, 261, 272, 277, 290, 295, 301, 306, 308, 319, 324, 326, 328, 330, 333, 335
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, 57, 65, 68, 70, 75, 81, 83, 86, 94, 99, 104, 112, 115, 117, 123, 128, 130, 133, 141, 146, 151, 157, 159, 162, 164, 170, 175, 180, 188, 191, 193, 198, 204, 206, 209, 217, 222, 227, 233, 235, 238, 240, 246, 251
Offset: 1
Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) = A351415
(2) u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) = A356101
(3) u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4) u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
Original entry on oeis.org
1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, 40, 43, 45, 48, 51, 55, 58, 59, 63, 66, 69, 72, 76, 77, 80, 84, 87, 90, 92, 95, 98, 101, 105, 106, 110, 113, 116, 119, 121, 124, 127, 131, 134, 137, 139, 142, 145, 148, 152, 153, 156, 160, 163, 166, 168, 171
Offset: 1
(1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
(2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
(3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
(4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *)
Original entry on oeis.org
1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, 37, 39, 43, 45, 48, 52, 54, 57, 59, 63, 66, 68, 72, 75, 77, 81, 83, 86, 90, 92, 95, 99, 101, 104, 106, 110, 113, 115, 119, 121, 124, 128, 130, 133, 137, 139, 142, 144, 148, 151, 153, 157, 159, 162, 166, 168, 171
Offset: 1
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = A190509
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
-
z = 1000;
u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *)
u1 = Complement[Range[Max[u]], u]; (* A001950 *)
v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *)
v1 = Complement[Range[Max[v]], v]; (* A108598 *)
zz = 120;
Table[v[[u[[n]]]], {n, 1, z/4}] (* A356217 *)
Table[v1[[u[[n]]]], {n, 1, z/4}] (* A356218 *)
Table[v[[u1[[n]]]], {n, 1, z/4}] (* A190509 *)
Table[v1[[u1[[n]]]], {n, 1, z/4}] (* A356220 *)
Showing 1-10 of 11 results.
Comments