A351454 Lexicographically earliest infinite sequence such that a(i) = a(j) => A006530(i) = A006530(j), A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.
1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 40, 21, 41, 4, 42, 22, 43, 12, 44, 23, 45, 7, 46, 24, 47, 13, 48, 25, 49, 3, 50, 26, 51, 14, 52, 27, 53, 8, 54
Offset: 1
Keywords
Examples
a(99) = a(121) because 99 = 3^2 * 11 and 121 = 11^2, so they have equal largest prime factor (A006530), and they also agree on A329697(99) = A329697(121) = 4 and on A331410(99) = A331410(121) = 4, therefore they get equal value (which is 51) allotted to them by the restricted growth sequence transform. - _Antti Karttunen_, Feb 14 2022
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]); A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1])))); A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); Aux351454(n) = [A006530(n), A329697(n), A331410(n)]; v351454 = rgs_transform(vector(up_to, n, Aux351454(n))); A351454(n) = v351454[n];
Comments