cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351460 Lexicographically earliest infinite sequence such that a(i) = a(j) => A006530(i) = A006530(j), A206787(i) = A206787(j) and A336651(i) = A336651(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 40, 21, 41, 4, 42, 22, 43, 12, 44, 23, 45, 7, 46, 24, 47, 13, 48, 25, 49, 3, 50, 26, 51, 14, 52, 27, 53, 8, 54
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

Restricted growth sequence transform of the ordered triplet [A006530(n), A206787(n), A336651(n)].
For all i, j >= 1:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A347241(i) = A347241(j),
a(i) = a(j) => A351461(i) = A351461(j) => A347240(i) = A347240(j).

Examples

			a(429) = a(455) because 429 = 3*11*13 and 455 = 5*7*13, so they have equal largest prime factor (A006530), and they also agree on A206787(429) = A206787(455) = 672 and on A336651(429) = A336651(455) = 1 (because both are squarefree), therefore they get equal value (which is 216) allotted to them by the restricted growth sequence transform. - _Antti Karttunen_, Feb 14 2022
		

Crossrefs

Cf. also A324400, A351452.
Differs from A351454 for the first time at n=121, where a(121) = 62, while A351454(121) = 51.
Differs from A103391(1+n) for the first time after n=1 at n=455, where a(455) = 216, while A103391(456) = 229.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A206787(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ From A206787
    A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,f[i,1]^(f[i,2]-1))); };
    Aux351460(n) = [A006530(n), A206787(n), A336651(n)];
    v351460 = rgs_transform(vector(up_to, n, Aux351460(n)));
    A351460(n) = v351460[n];