A351465 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the imaginary part of f(n). See A351464 for the real part.
0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 5, 4, 1, 4, 1, 7, 6, 6, 1, 7, 2, 7, 3, 9, 1, 10, 1, 5, 7, 8, 7, 6, 1, 9, 8, 10, 1, 13, 1, 11, 8, 10, 1, 9, 2, 5, 9, 13, 1, 5, 8, 13, 10, 11, 1, 15, 1, 12, 10, 6, 9, 16, 1, 15, 11, 18, 1, 8, 1, 13, 7, 17, 9, 19, 1, 13
Offset: 1
Examples
For n = 42: - 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1, - f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i, - and a(42) = 13.
Programs
-
Maple
b:= proc(n) option remember; uses numtheory; mul(pi(i[1])+i[2]*I, i=ifactors(n)[2]) end: a:= n-> Im(b(n)): seq(a(n), n=1..80); # Alois P. Heinz, Feb 15 2022
-
Mathematica
f[p_, e_] := PrimePi[p] + e*I; a[1] = 0; a[n_] := Im[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
-
PARI
a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); imag(prod (k=1, #p, primepi(p[k]) + I*e[k])) }