A351481 Decimal expansion of log_2((611 + sqrt(73))/36)/2.
2, 0, 5, 2, 5, 6, 8, 9, 7, 1, 6, 1, 2, 7, 3, 5, 6, 6, 5, 1, 0, 7, 8, 7, 1, 5, 4, 0, 4, 7, 8, 6, 5, 5, 8, 7, 1, 0, 5, 3, 8, 4, 8, 7, 6, 2, 3, 7, 1, 2, 2, 1, 4, 3, 8, 8, 9, 2, 9, 8, 0, 3, 2, 7, 7, 4, 1, 7, 9, 0, 8, 2, 0, 0, 4, 1, 2, 0, 7, 1, 0, 4, 6, 5, 9, 3, 2, 3, 6, 3
Offset: 1
Examples
2.052568971612735665107871540478655871...
Links
- S. Yu. Orevkov, Counting lattice triangulations: Fredholm equations in combinatorics, arXiv:2201.12827 [math.CO], 2022. See Theorem 1, p. 2.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
First[RealDigits[N[Log[2,(611+Sqrt[73])/36]/2,90]]]
-
PARI
log((611 + sqrt(73))/36)/log(4) \\ Charles R Greathouse IV, Oct 31 2023
Formula
Equals log_2(alpha)/2, where alpha = lim_{n->oo} A082640(2, n)^(1/n).