A351537 Odd numbers k for which sigma(k) is congruent to 2 modulo 4 and is not a multiple of 3.
13, 37, 61, 73, 97, 109, 117, 157, 181, 193, 229, 241, 277, 313, 325, 333, 337, 349, 373, 397, 409, 421, 433, 457, 541, 549, 577, 601, 613, 657, 661, 673, 709, 733, 757, 769, 829, 853, 873, 877, 925, 937, 981, 997, 1009, 1021, 1033, 1053, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297, 1321, 1381, 1413
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[1, 1440, 2], MemberQ[{2, 10}, Mod[DivisorSigma[1, #], 12]] &] (* Michael De Vlieger, Feb 14 2022 *)
-
PARI
isA351537(n) = if(!(n%2),0,my(s=sigma(n)); (2 == (s%4)) && (0 != (s%3)));
-
PARI
list(lim)=my(v=List()); forstep(m=1,sqrtint(lim\13),2, my(m2=m^2); if(sigma(m2)%3==0,next); forprimestep(p=13,lim\m2,12, m%p && listput(v,p*m2))); forstep(e=9,logint(lim\1,13),[4,8], forstep(m=1,sqrtint(lim\13^e),2, my(m2=m^2); if(sigma(m2)%3==0,next); forprimestep(p=13,lim\m2,12, m%p && listput(v,p^e*m2)))); Set(v) \\ Charles R Greathouse IV, Feb 14 2022
Formula
a(n) = A351538(n)/2.
Comments