cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351537 Odd numbers k for which sigma(k) is congruent to 2 modulo 4 and is not a multiple of 3.

Original entry on oeis.org

13, 37, 61, 73, 97, 109, 117, 157, 181, 193, 229, 241, 277, 313, 325, 333, 337, 349, 373, 397, 409, 421, 433, 457, 541, 549, 577, 601, 613, 657, 661, 673, 709, 733, 757, 769, 829, 853, 873, 877, 925, 937, 981, 997, 1009, 1021, 1033, 1053, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297, 1321, 1381, 1413
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2022

Keywords

Comments

Terms are of the form p^e*m^2 where e is 1 or 9 mod 12, p is a prime = 1 mod 12 and m is an odd number not divisible by p with sigma(m^2) not divisible by 3, i.e., q^e || m implies e is not 1 mod 3 or q = 2 mod 3. - Charles R Greathouse IV, Feb 14 2022

Crossrefs

Intersection of A191218 and A329963.
Contains A068228 as a subsequence.
Terms of A351538 halved.

Programs

  • Mathematica
    Select[Range[1, 1440, 2], MemberQ[{2, 10}, Mod[DivisorSigma[1, #], 12]] &] (* Michael De Vlieger, Feb 14 2022 *)
  • PARI
    isA351537(n) = if(!(n%2),0,my(s=sigma(n)); (2 == (s%4)) && (0 != (s%3)));
    
  • PARI
    list(lim)=my(v=List()); forstep(m=1,sqrtint(lim\13),2, my(m2=m^2); if(sigma(m2)%3==0,next); forprimestep(p=13,lim\m2,12, m%p && listput(v,p*m2))); forstep(e=9,logint(lim\1,13),[4,8], forstep(m=1,sqrtint(lim\13^e),2, my(m2=m^2); if(sigma(m2)%3==0,next); forprimestep(p=13,lim\m2,12, m%p && listput(v,p^e*m2)))); Set(v) \\ Charles R Greathouse IV, Feb 14 2022

Formula

a(n) = A351538(n)/2.