A351439 Number of prime factors p of n such that p^(1+valuation(n,p)) divides sigma(n).
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1
Keywords
Examples
For n = 30 = 2*3*5, sigma(30) = 72 = 2^3 * 3^2 and thus for two of the three prime factors of 30, a higher power of the same prime divides sigma(30), and therefore a(30) = 2.
Links
Programs
-
Mathematica
{0}~Join~Table[Function[m, Count[FactorInteger[n][[All, 1]], ?(Mod[m, #^(1 + IntegerExponent[n, #])] == 0 &)]][DivisorSigma[1, n]], {n, 2, 108}] (* _Michael De Vlieger, Feb 16 2022 *)
-
PARI
A351439(n) = { my(f=factor(n),s=sigma(n)); sum(k=1,#f~,(0==(s%(f[k,1]^(1+f[k,2]))))); };