A351540 Numbers k that have an odd prime factor p such that p^(1+valuation(k,p)) divides sigma(k).
30, 51, 66, 96, 102, 120, 138, 159, 165, 174, 204, 210, 213, 246, 255, 264, 267, 282, 294, 306, 318, 321, 330, 345, 354, 357, 364, 390, 408, 426, 435, 462, 477, 480, 498, 510, 534, 537, 552, 561, 570, 591, 606, 615, 636, 642, 660, 663, 672, 678, 679, 690, 696, 699, 705, 714, 735, 745, 750, 753, 759, 760, 765, 786
Offset: 1
Keywords
Examples
30 = 2 * 3 * 5 is present as sigma(30) = 72 = 2^3 * 3^2, and thus there is at least one odd prime factor (in this case 3) such that a higher power of the same prime divides the sum of divisors of the same number.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 800], Function[{k, s}, AnyTrue[DeleteCases[FactorInteger[k][[All, 1]], 2], Mod[s, #^(1 + IntegerExponent[k, #])] == 0 &]] @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Feb 16 2022 *)
-
PARI
A351539(n) = { my(f=factor(n),s=sigma(n)); sum(k=1,#f~,(f[k,1]%2)&&(0==(s%(f[k,1]^(1+f[k,2]))))); }; isA351540(n) = (A351539(n)>0);