A351541 Even numbers k that have an odd prime factor p such that p^(1+valuation(k,p)) divides sigma(k), but p does not divide A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
364, 760, 1092, 1148, 1160, 1358, 1490, 1782, 1990, 2324, 2360, 2716, 2912, 2980, 3160, 3276, 3388, 3430, 3444, 3490, 3560, 3564, 3892, 3980, 4004, 4074, 4102, 4360, 4490, 4676, 4990, 5068, 5302, 5320, 5432, 5510, 5560, 5960, 5990, 6188, 6244, 6804, 6860, 6916, 6972, 6980, 7028, 7128, 7160, 7462, 7960, 8120, 8148
Offset: 1
Keywords
Examples
364 = 2^2 * 7^1 * 13^1 is present as sigma(364) = 784 = 2^4 * 7^2, which thus has a shared prime factor 7 with 364, but occurring with larger exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 364.
Links
Programs
-
Mathematica
Select[Range[2, 8200, 2], Function[{k, s, facs, t}, AnyTrue[DeleteCases[facs[[All, 1]], 2], And[Mod[s, #^(1 + IntegerExponent[k, #])] == 0, Mod[t, #] != 0] &]] @@ {#1, #2, #3, Apply[Times, (NextPrime[#1])^#2 & @@@ #3]} & @@ {#, DivisorSigma[1, #], FactorInteger[#]} &] (* Michael De Vlieger, Feb 16 2022 *)
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; Aux351541(n) = { my(f=factor(n),s=sigma(n),u=A003961(n)); sum(k=1,#f~,(f[k,1]%2) && 0!=(u%f[k,1]) && (0==(s%(f[k,1]^(1+f[k,2]))))); }; isA351541(n) = (!(n%2) && Aux351541(n)>0);
Comments