A351542 Even numbers k that have an odd prime factor p such that p also divides sigma(k), but valuation(k,p) differs from valuation(sigma(k), p), and p does not divide A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
196, 200, 364, 588, 760, 950, 1000, 1092, 1148, 1160, 1274, 1358, 1372, 1400, 1450, 1490, 1568, 1764, 1782, 1900, 1990, 2156, 2200, 2324, 2360, 2600, 2716, 2900, 2912, 2950, 2980, 3042, 3160, 3200, 3276, 3332, 3388, 3400, 3430, 3444, 3490, 3560, 3564, 3724, 3822, 3892, 3950, 3980, 4004, 4018, 4074, 4102, 4116, 4360
Offset: 1
Keywords
Examples
196 = 2^2 * 7^2 is present as sigma(196) = 399 = 3^1 * 7^1 * 19^1, which thus has a shared prime factor 7 with 196, but occurring with smaller exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 196. 364 = 2^2 * 7^1 * 13^1 is present as sigma(364) = 784 = 2^4 * 7^2, which thus has a shared prime factor 7 with 364, but occurring with larger exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 364.
Links
Programs
-
Mathematica
Select[Range[2, 4400, 2], Function[{k, s, facs, t}, AnyTrue[DeleteCases[facs[[All, 1]], 2], And[Mod[s, #] == 0, IntegerExponent[s, #] != IntegerExponent[k, #], Mod[t, #] != 0] &]] @@ {#1, #2, #3, Apply[Times, (NextPrime[#1])^#2 & @@@ #3]} & @@ {#, DivisorSigma[1, #], FactorInteger[#]} &] (* Michael De Vlieger, Feb 16 2022 *)
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; Aux351542(n) = { my(f=factor(n),s=sigma(n),u=A003961(n),v); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), v=valuation(s,f[k,1]); (v>0) && (v!=f[k,2]), 0)); }; isA351542(n) = (!(n%2) && Aux351542(n)>0);
Comments