A351543 Even numbers k such that there is an odd prime p that divides sigma(k), but valuation(k, p) differs from valuation(sigma(k), p), and p does not divide A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
4, 8, 12, 16, 18, 26, 32, 36, 38, 44, 48, 50, 52, 56, 58, 64, 68, 72, 74, 76, 78, 80, 82, 86, 88, 90, 92, 96, 98, 100, 104, 108, 112, 116, 118, 122, 124, 126, 128, 132, 134, 136, 144, 146, 148, 150, 152, 156, 158, 162, 164, 166, 172, 176, 178, 180, 184, 188, 192, 194, 196, 200, 202, 204, 206, 208, 212, 218, 222, 226
Offset: 1
Keywords
Examples
12 = 2^2 * 3 is present as sigma(12) = 28 = 2^2 * 7, whose prime factorization contains an odd prime 7 such that neither it nor the immediately previous prime, which is 5, divide 12 itself. 196 = 2^2 * 7^2 is present as sigma(196) = 399 = 3^1 * 7^1 * 19^1, which thus has a shared prime factor 7 with 196, but occurring with smaller exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 196. 364 = 2^2 * 7^1 * 13^1 is present as sigma(364) = 784 = 2^4 * 7^2, which thus has a shared prime factor 7 with 364, but occurring with larger exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 364.
Comments