cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351551 Numbers k such that the largest unitary divisor of sigma(k) that is coprime with A003961(k) is also a unitary divisor of k.

Original entry on oeis.org

1, 2, 10, 34, 106, 120, 216, 260, 340, 408, 440, 580, 672, 696, 820, 1060, 1272, 1666, 1780, 1940, 2136, 2340, 2464, 3320, 3576, 3960, 4280, 4536, 5280, 5380, 5860, 6456, 6960, 7520, 8746, 8840, 9120, 9632, 10040, 10776, 12528, 12640, 13464, 14560, 16180, 16660, 17400, 17620, 19040, 19416, 19992, 21320, 22176, 22968
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351546(k) is a unitary divisor of k.
The condition guarantees that A351555(k) = 0, therefore this is a subsequence of A351554.
The condition is also a necessary condition for A349745, therefore it is a subsequence of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Not all multiperfects (A007691) are present (only 587 of the first 1600 are), but all 23 known terms of A323653 are terms, while none of the (even) terms of A046061 or A336702 are.

Examples

			For n = 672 = 2^5 * 3^1 * 7^1, and the largest unitary divisor of the sigma(672) [= 2^5 * 3^2 * 7^1] coprime with A003961(672) [= 13365 = 3^5 * 5^1 * 11^1] is 2^5 * 7^1 = 224, therefore A351546(672) is a unitary divisor of 672, and 672 is included in this sequence.
		

Crossrefs

Cf. A000203, A000396, A003961, A007691, A046061, A065997, A336702, A351546, A351555, A353633 (characteristic function).
Subsequence of A351552 and of A351554.
Cf. A349745, A351550 (subsequences), A005820, A046060, A323653 (very likely subsequences).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351546(n) = { my(f=factor(sigma(n)),u=A003961(n)); prod(k=1,#f~,f[k,1]^((0!=(u%f[k,1]))*f[k,2])); };
    isA351551(n) =  { my(u=A351546(n)); (!(n%u) && 1==gcd(u,n/u)); };