cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351569 Sum of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 15, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 60, 1, 42, 40, 8, 30, 72, 32, 63, 48, 54, 48, 1, 38, 60, 56, 90, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 120, 72, 120, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A000203, A013662, A028982 (positions of odd terms), A268335 (exponentially odd numbers), A350389, A351568, A351571.
Coincides with A001615 on squarefree numbers, A005117.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A351569(n): return prod((p**(e+1)-1)//(p-1) if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and 1 otherwise.
a(n) = A000203(A350389(n)).
a(n) = A000203(n) / A351568(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(4)/2 = Pi^4/180 = 0.541161... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s - 1/p^(2*s-2)). - Amiram Eldar, Sep 03 2023