A351569 Sum of divisors of the largest unitary divisor of n that is an exponentially odd number.
1, 3, 4, 1, 6, 12, 8, 15, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 60, 1, 42, 40, 8, 30, 72, 32, 63, 48, 54, 48, 1, 38, 60, 56, 90, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 120, 72, 120, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
-
PARI
A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); }; A351569(n) = sigma(A350389(n));
-
Python
from math import prod from sympy import factorint def A351569(n): return prod((p**(e+1)-1)//(p-1) if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022
Formula
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and 1 otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(4)/2 = Pi^4/180 = 0.541161... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s - 1/p^(2*s-2)). - Amiram Eldar, Sep 03 2023