cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351570 Arithmetic derivative of the sum of the divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 22, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 22, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 22, 1, 38
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Comments

Observation: There seems to be no terms in range 2..19 in this sequence.

Crossrefs

Cf. A000203, A003415, A342925, A350388, A351568, A351571, A351572, A351575 (positions of ones).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351570(n) = A003415(sigma(A350388(n)));

Formula

A351573 Arithmetic derivative of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

0, 1, 1, 0, 1, 5, 1, 12, 0, 7, 1, 1, 1, 9, 8, 0, 1, 1, 1, 1, 10, 13, 1, 44, 0, 15, 27, 1, 1, 31, 1, 80, 14, 19, 12, 0, 1, 21, 16, 68, 1, 41, 1, 1, 1, 25, 1, 1, 0, 1, 20, 1, 1, 81, 16, 92, 22, 31, 1, 8, 1, 33, 1, 0, 18, 61, 1, 1, 26, 59, 1, 12, 1, 39, 1, 1, 18, 71, 1, 1, 0, 43, 1, 10, 22, 45, 32, 140, 1, 7, 20, 1, 34
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A003415, A350388, A268335 (exponentially odd numbers), A351571, A351572.

Programs

  • Mathematica
    f1[p_, e_] := If[OddQ[e], p^e, 1]; f2[p_, e_] := If[OddQ[e], e/p, 0]; a[1] = 0; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n])) * (Plus @@ f2 @@@ f); Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351573(n) = A003415(A350389(n));

Formula

a(n) = A003415(A350389(n)).
Showing 1-2 of 2 results.